Paramagnetic-Diamagnetic Phase Transition Accompanied by Coordination Bond Formation-Dissociation in the Dithiolate Complex $Na[Ni(pdt)_2]$ $2H_2O$

Shinya Takaishi,* Nozomi Ishihara, Kazuya Kubo, Keiichi Katoh, Brian K. Breedlove, Hitoshi Miyasaka, and Masahiro Yamashita

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

S Supporting Information

ABSTRACT: Bis(2,3-pyrazinedithiolate)nickel complex $Na[Ni(pdt)_2]\cdot 2H_2O$ formed one-dimensional stacks of the $Ni(pdf)_2$ units and showed strong antiferromagnetic interactions along the stacking direction. A first-order phase transition between the paramagnetic and diamagnetic states, which was driven by dimerization of the $Ni(pdf)_2$ units, accompanied by coordination bond formation, was observed.

Electronic properties of bis(o -dithiolate) metal complexes,
such as superconductivity,¹ spin liquid phenomena,² single-
superconductivity,¹ bis liquid phenomena,² singlecomponent molecular metal behavior, 3 etc., have been extensively studied in relation to conducting and magnetic materials because of their redox activity and π -extended molecular orbitals. Some $bis(o-dithiolate)$ metal complexes with a one-dimensional electronic structure undergo a phase transition caused by electronic instability or bistability via a strong electron-lattice interaction, such as a charge-transfer (CT) phase transition,⁴ Peierls transition,⁵ etc. In the present Communication, we report that the bis(φ -dithiolate)nickel complex Na[Ni(pdt)₂] \cdot 2H₂O (pdt = 2,3-pyrazinedithiolate) undergoes a phase transition between the paramagnetic and diamagnetic states, which is driven by dimerization of the $Ni(pdt)_2$ units, accompanied by coordination bond formation-dissociation.

 $\text{Na}[\text{Ni}(\text{pdf})_2] \cdot 2\text{H}_2\text{O}$ was synthesized by the electrochemical oxidation of $\text{Na}_2[\text{Ni}(\text{pdt})_2]$ in 5:1 (v/v) $\text{H}_2\text{O}/\text{MeOH}$ with a constant current of 5 μ A. After 1 week, black needle-shaped crystals formed on the anode. Elem anal. Calcd for $\rm{C_8H_8N_4Na_1}$ -Ni1O2S4: C, 23.89; H, 2.01; N, 13.93. Found: C, 23.895; H, 1.962; N, 13.994. The magnetic susceptibility of the polycrystalline sample was measured in a 1 T field using a Quantum Design MPMS susceptometer. Single-crystal structures were determined on a Rigaku CCD diffractometer with a VariMax microfocus X-ray source of graphite-monochromated Mo Kα radiation ($λ =$ 0.7107 Å). The electrical resistivity was measured by using a twoprobe method with a constant voltage of 1.0 V on a Keithley 6211 system sourcemeter.

Figure 1 shows the crystal structure of $\text{Na}[\text{Ni}(\text{pdf})_2]\cdot 2\text{H}_2\text{O}$ at 230 K. The $Ni(pdf)₂$ units had square-planar geometries. In the bc plane, the Ni(pdt)₂ units are arranged in a herringbone motif. Each $Ni(pdt)_2$ unit is connected to each other via weak N-Na coordination bonds (N-Na distance = 2.586 Å). Ni(pdt)₂ units

Figure 1. Crystal structure of $\text{Na}[\text{Ni}(\text{pdt})_2] \cdot 2\text{H}_2\text{O}$ at 230 K: (a) top view; (b) side view. Color code: gray, Ni; yellow, S; green, Na; red, O; blue, N; black, C; pink, H.

are one-dimensionally stacked through an infinite number of \cdots Na $-(\mu \cdot O_{aq})_2 -$ Na \cdots coordination bonds along the *a* axis with a distance of 3.54 Å, indicating that there are $\pi-\pi$ interactions between the neighboring $Ni(\text{pdt})_2$ units. The structure is almost the same as that previously reported for $Na[\text{Cu}(\text{pdt})_2]$. is almost the same as that previously reported for Na[Cu(pdt)₂] \cdot 2H₂O.⁶ However, the nickel complex is spin ¹/₂, whereas the copper complex is spinless.

Figure 2 shows molecular orbitals of $[Ni(pdt)_2]$ ⁻ calculated using density fundtional theory (DFT) at the UB3LYP level with the 6-31G* basis set. The X-ray data were used for the calculations, and point charges of $0.5+$ were added at the positions of the Na ions. On the basis of the DFT calculations, the lowest unoccupied molecular orbital (LUMO) is comprised of an antibonding Ni $d_{x^2-y^2}$ orbital and an S p_{σ} orbital. The singly

Published: June 10, 2011 Received: April 8, 2011

Figure 2. Frontier molecular orbitals of $\text{Ni}(\text{pdt})_2$ ⁻.

Figure 3. Magnetic susceptibility of $\text{Na}[\text{Ni}(\text{pdt})_2] \cdot 2\text{H}_2\text{O}$. Solid and broken lines show a Bonner–Fisher curve with $J/k_B = 420$ and 500 K, respectively. An isotropic g value $(=2.108)$ was determined by an electron spin resonance spectrum with a methanol solution of Na[Ni- $(\text{pdt})_2$] \cdot 2H₂O.

occupied molecular orbital (SOMO) is comprised of p_{π} orbitals on the pdt ligands with a nonnegligible contribution from the metal ion. The highest occupied molecular orbital (HOMO) is mainly comprised of p_{π} orbitals on the pdt ligands. From the crystal structure, the distance between the nearest $Ni(pdf)_2$ planes was 3.54 Å, which means that the SOMOs of each unit $Ni(pdf)_2$ overlap, causing antiferromagnetic interactions. We also made conventional band calculations with a combination of the extended Hückel method and the tight binding model. The overlap integral (S) between the neighboring $Ni(pdf)_2$ molecules along the stacking direction $(=-1.05 \times 10^{-2})$ is much larger than that along the other direction (<1.5 \times 10⁻³), indicating that the present compound is nearly in a one-dimensional system.

Figure 3 shows a plot of the magnetic susceptibility of Na- $[Ni(pdt)_2]\cdot 2H_2O$. The magnetic susceptibility above 215 K gradually decreased upon cooling, indicating that strong antiferromagnetic interactions were present. The susceptibility could not be reproduced by fitting with a spin $\frac{1}{2}$ one-dimensional antiferromagnetic model (Bonner-Fisher model)⁷ with a unique J value. This is probably because the value of J itself changes with temperature between $J/k_B = 420$ and 500 K. The magnetic susceptibility showed hysteresis at critical temperatures (T_c) of 216 and 221 K upon cooling and heating, respectively. This

Figure 4. Crystal structure of $\text{Na}[\text{Ni}(\text{pdt})_2] \cdot 2H_2O$ at 210 K. Color code: gray, Ni; yellow, S; green, Na; red, O; blue, N; black, C; pink, H.

Figure 5. Electrical resistivity of $\text{Na}[\text{Ni}(\text{pdf})_2] \cdot 2\text{H}_2\text{O}.$

indicates that some first-order phase transitions occur between the paramagnetic and diamagnetic states.

In order to clarify the origin of the phase transition, we performed X-ray crystal structure analysis below T_c (210 K). The temperature was decreased from 230 to 210 K at a rate of \leq 0.5 K/min because the single crystal collapsed when we decreased the temperature quickly. Figure 4 shows the crystal structure of $\text{Na}[\text{Ni}(\text{pdf})_2]\cdot 2\text{H}_2\text{O}$ at 210 K. There was a marked difference in the molecular geometry as well as its periodicity. At 230 K, the $Ni(pdf)_2$ molecules have a mostly planar structure and were arranged uniformly, forming one-dimensional columns. At 210 K, on the other hand, the molecules were distorted from the square-planar geometry and had dimerized, forming a $Ni-S$ coordination bond (Ni-S distance = 2.413 Å). The abrupt decrease in the magnetic susceptibility is explained by dimerization of the $Ni(pdt)_2$ units, which gives rise to a spin singlet ground state. The contribution of $1/T$ at low temperature (the spin concentration is 0.37%) is probably due to the isolated unpaired electrons arising from a phase mismatch upon dimerization.

The origin of this phase transition is qualitatively explained as follows. The tendency for dimerization in the $bis(o\text{-dithiolate})$ metal complexes highly depends on the metal ion. To the best of our knowledge, monoanionic nickel complexes have a moderate tendency to dimerize (lower than manganese, iron, and cobalt complexes and higher than copper complexes).⁸ In the present compound, in addition, the molecules are originally arranged in a slipped stack motif to enable dimerization. Those conditions enable transformation between the monomer and dimer reversibly.

Figure 5 shows the electrical resistivity of $Na[Ni(pdt)_2]$ ³
2H₂O. This compound showed semiconducting behavior with an activation energy of 0.23 eV above T_c . This energy gap is probably due to on-site Coulomb repulsion between the Ni- $(\text{pdf})_2$ units. Below T_c , the electrical conductivity could not be measured because the resistivity was too high (>10⁹ Ω cm).

ASSOCIATED CONTENT

6 Supporting Information. X-ray crystallographic data in CIF format and an electron spin resonance spectrum of Na[Ni- $(\text{pdf})_2$] \cdot 2H₂O. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author *E-mail: takaishi@mail.tains.tohoku.ac.jp.

ACKNOWLEDGMENT

The authors acknowledge Dr. Shintaro Ishida and Fumiya Hirakawa for electron spin resonance measurements. This work was partly supported by a Grant-in-Aid for Creative Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology.

REFERENCES

(1) (a) Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. J. Phys. (Paris) 1989, 50, 1521–1534. (b) Brossard, L.; Ribault, M.; Valade, L.; Cassoux., P. Physica B+C 1986, 143, 378-380. (c) Schirber, J. E.; Overmyer, D. L.; Williams, J. W.; Wang, H. H.; Valade, L.; Cassoux, P. Phys. Lett. A 1987, 120, 87–88. (d) Tajima, H.; Inokuchi, M.; Kobayashi, A.; Ohta, T.; Kato, R.; Kobayashi, H.; Kuroda, H. Chem. Lett. 1993, 22, 1235–1238.

(2) (a) Itou, T.; Oyamada, A.; Maegawa, S.; Kato, R.Nat. Phys. 2010, 6, 673–676. (b) Itou, T.; Oyamada, A.; Maegawa, S.; Tamura, M.; Kato, R. Phys. Rev. B 2008, 77, 104413.

(3) (a) Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki,W.; Kobayashi, A. Science 2001, 291, 285–287. (b) Kobayashi, A.; Sasa, M.; Suzuki, W.; Fujiwara, E.; Tanaka, H.; Tokumoto, M.; Okano, Y.; Fujiwara, H.; Kobayashi, H. J. Am. Chem. Soc. 2004, 126, 426–427.

(4) (a) Torrance, L. B.; Vazquez, J. E.; Mayerle, J. J.; Lee, V. Y. Phys. Rev. Lett. 1981, 46, 253–257. (b) Umezono, Y.; Fujita, W.; Awaga, K. J. Am. Chem. Soc. 2006, 128, 1084–1085.

(5) (a) Zeller, H. R. J. Phys. Chem. Solids 1974, 35, 77–80. (b) Jacobs, I. S.; Bray, J. W.; Hart, H. R., Jr.; Interrante, L. V.; Kasper, J. S.; Watkins, G. D.; Prober, D. E.; Bonner, J. C. Phys. Rev. B 1976, 14, 3036–3051.

(6) Ribas, X.; Dias, J. C.; Morgado, J.; Wurst, K.; Molins, E.; Ruiz, E.; Almeida, M.; Veciana, J.; Rovira, C. Chem.—Eur. J. 2004, 10, 1691– 1704.

(7) (a) Bonner, J. C.; Fisher, M. E. Phys. Rev. A 1964, 135, 640–658. (b) Estes, W. E.; Gavel, D. P.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem. 1978, 17, 1415–1421.

(8) Karlin, K. D.; Stiefel, E. I. Progress in Inorganic Chemistry; John Wiley & Sons, Inc.: New York, 2004; Vol. 52.